

Geometry Modeling for Automated Finite-Element Analysis of Aircraft Conceptual Design

Wu Li and Jay Robinson Aeronautics Systems Analysis Branch NASA Langley Research Center

OpenVSP Workshop 2016, August 2016

Outline

- Different automation needs for Finite-Element Analysis (FEA)
- A novel geometry modeling approach for automation of FEA
- Status of current implementation
- Numerical results
- Concluding remarks

Automation of Finite-Element Analysis (FEA)

- Conceptual design: Provide more simulation-based info for investment decision support.
- Preliminary design: Enable MDAO studies for interdisciplinary coupling benefits.
- Detailed design: Reduce labor cost for analysis of product mods before manufacturing.

Envisioned Automation Process for FEA

Current Status

- The automated FEA process in ModelCenter starts with an OpenVSP geometry and ends with a NASTRAN 200 solution of any wing-body configuration under two constant pressure load conditions on the wing.
- Two meshing tools: (1) HYBRID mesher in PATRAN, (2) Geompack++
- The automation process can be set up in minutes instead of hours or days.
- Long-term goal: Rapid MDAO capability using static aeroelastic analysis.

OpenVSP to Structural Geometry

Novelty of FEM-Ready Geometry

- Separation of internal component construction and FEM meshing:
 - Construct a fully connected geometry model for both internal components and skins, which is called FEM-ready geometry.
 - Generate a fully connected finite-element mesh for any FEM-ready geometry without manual preprocessing!
- The separation allows the use of the best available meshing tool in the automation.

HYBRID Mesher in PATRAN

- Export FEM-ready geometry in IGES format as a collection of bilinear B-spline surfaces.
- Use PCL commands in a session file to control the meshing process and export the generated finite-element mesh in a bulk data file.
- The generated mesh is of high quality.
- Number of elements can be controlled by a global length parameter.
- The generated mesh usually contains both quadrilaterals and triangles.

Meshing Software Geompack++

- Geompack++ always generates a quadrilateral mesh for FEM-ready geometry.
- It is not easy to control the mesh size and quality.
- Advancing front method in Geompack++, Barry Joe, Canada.
- Export FEM-ready geometry in the 3D region format required by Geompack++:
 - Each surface is interpolated by a bilinear B-spline surface.
 - All surfaces are rearranged as a collection of watertight compartments.

A Simple Thickness Optimization Problem

min WEIGHT *subject to* |von Mises stress| ≤ stressUB

- All elements for each [bilinear B-spline] surface in the FEM-ready geometry share a thickness design variable.
- Two constant pressure load conditions on the wing:
 - Total wing load in the downward direction is 1X of the cruise weight.
 - Total wing load in the upward direction is 3X of the cruise weight.
- All nodes on the symmetry plane are fixed.
- All elements have the same material property of a generic aluminum alloy.

User Input Requirements (I)

♥ materialsDB

User Input Requirements (II)

Illustration of some predefined groups:

Verification Cases

- Four structural layouts for a subsonic business jet and a supersonic low-boom demonstrator concept are used to verify the automation process.
- Five meshes are generated for each layout.
- All elements for one surface in FEM-ready geometry share one thickness design variable.

Sensitivity to Mesh Size

Meshes and Stress Contours

Concluding Remarks

- The automated FEA process starts with an OpenVSP geometry and ends with a NASTRAN 200 solution for thickness optimization.
- The automation process is versatile and robust.
- The automation process can be set up in minutes instead of hours or days.
- The process is verified with 20 meshes for 4 layouts of 2 configurations.
- For each layout, the stress contour plot for a coarse mesh resembles a smeared version of that for a fine mesh.
- Automated mesh generation: (1) FEM-ready geometry for internal components and skins, (2) External meshing tools to generate a fully connected FEM mesh.
- External meshing tools: PATRAN and Geompack++

FEA Process for OpenVSP?

Free FEM meshing tool: Geompack++ for non-commercial use Tool integration: OpenMDAO or OpenVSP scripts

Questions for Discussion

- 1. Is it possible to develop a 2D structural layout interface in VSP and the underlying numerical algorithms to generate a FEM-ready geometry model?
- 2. Could a standard geometry definition requirement be established for automated finite-element meshing?
- 3. Is a simple finite-element model better than a more detailed finite-element model during conceptual design?
- 4. What is the best trade-off between the finite-element modeling complexity and the knowledge requirement in setting up the analysis model during conceptual design?
- 5. Is there a numerical method to merge two structural meshes properly and reliably?
- 6. Is it time to have a structural weight uncertainty quantification workshop (similar to drag prediction workshop)?

Acknowledgments

- The authors would like to thank Karl Geiselhart at NASA Langley Research Center for providing analysis data of the subsonic business jet.
- The authors would like to thank James Fenbert at Analytical Mechanics Associates for instrumental comments.
- This work is funded by NASA Commercial Supersonic Technology (CST) Project and Transformational Tools & Technologies (T³) Project.

Backup (I): Approaches for Automated FEA

- Component-Level FEM Followed by Merging
 - FEM mesh intersection (M4 and GeoMach [UMich])
 - NASTRAN glue operation (Sharon Padula's LOFT and Jesse Quinland's modification of HCDstruct for D8)
- Defined Intersection and Component Scripting
 - Applicable to a specific type of vehicles (Jay Robinson's approach for supersonic bizjet, Jesse and Frank's approach for HWB, University of Michigan's approach for strut-braced wing, DLR's detailed wing model and UAV model, and most approaches including some commercial ones)
- Component-Level Trim and Merging Followed by FEM Meshing
 - FEM mesh for a trimmed and partitioned geometry model (ConceptFEM)

Backup (II): Complexity of Automated FEA

